スタッフからのお知らせK会本郷教室
29件の新着情報があります。 11-20件を表示
━【「言語学をのぞいてみよう その38」(元K会英語科講師:野中大輔) 】━
2024年10月5日 更新
━【「言語学をのぞいてみよう その38」(元K会英語科講師:野中大輔) 】━
★このコラムでは、言語学を研究している筆者(元K会英語科講師)が、英語・言語学・外国語学習・比較文化などの話題をお伝えしていきます。★
コトとモノについて考える
こんにちは、元K会英語科講師の野中大輔です。前回(その37)に引き続き、今回のコラムでも私が日常生活で見つけた表現を取り上げたいと思います。
先日バスに乗ったら、次のような注意書きが目に入りました。「熟睡、イヤホンなどによる乗り過ごしが増えています。目的地を過ぎないように気を付けましょう」と書いてあり、うっかり乗り過ごしてしまう人が意外といるんだなあと思って読んでいたところで、興味深い表現が含まれていることに気づきました。「熟睡、イヤホンなど」の部分です。「熟睡」「イヤホン」「など」の3つに分けて考えてみましょう。
まず「熟睡」について。「熟睡」の意味は〈ぐっすり眠ること〉ですね。このように、〈~すること〉を表す名詞を「コト名詞」と呼ぶことにします。他のコト名詞には「勉強」や「読書」などがあります。一方、「イヤホン」は〈一人で音楽・音声を聞くために耳に付けるもの〉です。こちらは「モノ名詞」と呼んでおきます。「えんぴつ」や「教科書」などもモノ名詞です。次に「など」についてですが、「A、Bなど」と言うときはAとBに同じタイプの表現を用いるのが普通でしょう。たとえば、「勉強、読書などが苦手」はごく普通の表現ですが、「勉強、教科書などが苦手」はおかしいと感じるのではないかと思います。
以上のことを踏まえると、「熟睡、イヤホンなど」は、「A、Bなど」のAにコト名詞、Bにモノ名詞という異なるタイプの名詞を並べているため、不自然な表現になることが予想されます。ところが、「熟睡、イヤホンなどによる乗り過ごし」は十分に意味が通じますし、かなり自然に感じられます。これが、私が興味深いと思ったポイントです。
コト名詞とモノ名詞を並べても成立する表現があるのはなぜでしょうか。先ほどはコト名詞とモノ名詞を分けて説明しましたが、実はコトとモノはそんなに単純に分離できるものではありません。イヤホンは何のためにあるのかと言えば〈一人で音楽・音声を聞くため〉であり、「イヤホン」の意味にはコト(聞くこと)が含まれています。このようにコトを意味に含んだモノ名詞は、時にコトの部分が表面化するような使い方がなされます。もし図書館内に「館内ペットボトル禁止」と書いてあれば、「館内にペットボトル飲料を持ち込むこと」または「館内でペットボトル飲料を飲むこと」の禁止を表していると理解されるはずですが、この場合もモノ名詞である「ペットボトル」がコト的に用いられています。そして、熟睡すること、イヤホンで何かを聞くことは、どちらも注意力を低下させることの例ですから、「A、Bなど」の形で並べたくなるのも自然だと言えます。このように考えれば、「熟睡、イヤホンなどによる乗り過ごし」という表現が成立することにも納得がいきますね。
なお、先ほど見た「勉強、教科書などが苦手」における「教科書」にもコト(読む)の意味が含まれていますが、教科書を読むことは勉強することの一部だと言えますから、「A、Bなど」の形で並べるのは変であり、日本語として自然に感じられるようにするには「勉強、特に教科書を読むことが苦手」などの言い方にする必要があるでしょう。
ここまでずっと日本語の話をしてきましたが、最後に少しだけ英語の話も。英語では無生物主語の表現がよく見られます。たとえば、「~させる」を表すmakeを用いたThe letter made me cry.などの例があります。日本語だと「その手紙が私を泣かせた」といった言い方はあまりせず、「その手紙を読んで泣いてしまった」などが普通の言い方です。無生物であるthe letterが主語になっている点に着目するだけでなく、the letterがコト的に使用されている、つまり「手紙を読むこと」と解釈される点にも着目すべきではないかと思います。どうやら、モノ名詞をどの程度コト的に用いるのかについては、言語によって差がありそうです。こういった点に注意しながら英語を学ぶのも、おもしろいのではないかと思います。
★このコラムでは、言語学を研究している筆者(元K会英語科講師)が、英語・言語学・外国語学習・比較文化などの話題をお伝えしていきます。★
コトとモノについて考える
こんにちは、元K会英語科講師の野中大輔です。前回(その37)に引き続き、今回のコラムでも私が日常生活で見つけた表現を取り上げたいと思います。
先日バスに乗ったら、次のような注意書きが目に入りました。「熟睡、イヤホンなどによる乗り過ごしが増えています。目的地を過ぎないように気を付けましょう」と書いてあり、うっかり乗り過ごしてしまう人が意外といるんだなあと思って読んでいたところで、興味深い表現が含まれていることに気づきました。「熟睡、イヤホンなど」の部分です。「熟睡」「イヤホン」「など」の3つに分けて考えてみましょう。
まず「熟睡」について。「熟睡」の意味は〈ぐっすり眠ること〉ですね。このように、〈~すること〉を表す名詞を「コト名詞」と呼ぶことにします。他のコト名詞には「勉強」や「読書」などがあります。一方、「イヤホン」は〈一人で音楽・音声を聞くために耳に付けるもの〉です。こちらは「モノ名詞」と呼んでおきます。「えんぴつ」や「教科書」などもモノ名詞です。次に「など」についてですが、「A、Bなど」と言うときはAとBに同じタイプの表現を用いるのが普通でしょう。たとえば、「勉強、読書などが苦手」はごく普通の表現ですが、「勉強、教科書などが苦手」はおかしいと感じるのではないかと思います。
以上のことを踏まえると、「熟睡、イヤホンなど」は、「A、Bなど」のAにコト名詞、Bにモノ名詞という異なるタイプの名詞を並べているため、不自然な表現になることが予想されます。ところが、「熟睡、イヤホンなどによる乗り過ごし」は十分に意味が通じますし、かなり自然に感じられます。これが、私が興味深いと思ったポイントです。
コト名詞とモノ名詞を並べても成立する表現があるのはなぜでしょうか。先ほどはコト名詞とモノ名詞を分けて説明しましたが、実はコトとモノはそんなに単純に分離できるものではありません。イヤホンは何のためにあるのかと言えば〈一人で音楽・音声を聞くため〉であり、「イヤホン」の意味にはコト(聞くこと)が含まれています。このようにコトを意味に含んだモノ名詞は、時にコトの部分が表面化するような使い方がなされます。もし図書館内に「館内ペットボトル禁止」と書いてあれば、「館内にペットボトル飲料を持ち込むこと」または「館内でペットボトル飲料を飲むこと」の禁止を表していると理解されるはずですが、この場合もモノ名詞である「ペットボトル」がコト的に用いられています。そして、熟睡すること、イヤホンで何かを聞くことは、どちらも注意力を低下させることの例ですから、「A、Bなど」の形で並べたくなるのも自然だと言えます。このように考えれば、「熟睡、イヤホンなどによる乗り過ごし」という表現が成立することにも納得がいきますね。
なお、先ほど見た「勉強、教科書などが苦手」における「教科書」にもコト(読む)の意味が含まれていますが、教科書を読むことは勉強することの一部だと言えますから、「A、Bなど」の形で並べるのは変であり、日本語として自然に感じられるようにするには「勉強、特に教科書を読むことが苦手」などの言い方にする必要があるでしょう。
ここまでずっと日本語の話をしてきましたが、最後に少しだけ英語の話も。英語では無生物主語の表現がよく見られます。たとえば、「~させる」を表すmakeを用いたThe letter made me cry.などの例があります。日本語だと「その手紙が私を泣かせた」といった言い方はあまりせず、「その手紙を読んで泣いてしまった」などが普通の言い方です。無生物であるthe letterが主語になっている点に着目するだけでなく、the letterがコト的に使用されている、つまり「手紙を読むこと」と解釈される点にも着目すべきではないかと思います。どうやら、モノ名詞をどの程度コト的に用いるのかについては、言語によって差がありそうです。こういった点に注意しながら英語を学ぶのも、おもしろいのではないかと思います。
━【「音楽から見る数学10」(元K会生・元K会数学科講師:布施音人) 】━
2024年9月13日 更新
━【「音楽から見る数学10」(元K会生・元K会数学科講師:布施音人) 】━
★このコラムでは、数学と音楽の両方に魅せられてきた筆者が、数学と音楽の共通点を考える中で見えてくる数学の魅力について、筆者なりの言葉でお伝えしていきます★
― 倍音列 ―
こんにちは。元K会数学科講師の布施音人です。
今回は倍音についての話をします。少し音楽に寄った話なので、馴染みのない方には分かりづらい話かもしれませんが、お付き合いください。
さて、みなさんは小学校でリコーダーを吹いたでしょうか?リコーダーで息を強く吹き込むと、出したかった音よりも高い音が「ピー!」と鳴ってしまったことはないでしょうか。例えば、低い「ミ」を鳴らそうと、左手の親指、人差し指、中指、薬指、右手の人差し指、中指で完全に穴を塞ぎ、強く吹くと、1オクターブ高い方の「ミ」が鳴ることがあります。この高い方の音は低い方の音の倍音であると言えます。
ある周波数fの音に対し、その倍音とは、fの2以上の整数倍(2f, 3f,...)の周波数を持つ音のことを言います。このとき、元の周波数fの音のことは基音と呼びます。基音と倍音とは密接な関係にあります。周波数fの音が鳴るように張られた弦があったとき、その弦は周波数2fの音や3fの音を鳴らすこともできます。これは弦楽器では「ハーモニクス」と呼ばれる奏法で、例えば弦の両端のちょうど中心に軽く指を押し当てながら、弦をはじくまたは弓で弾くと、指を押し当てていないときの音程の2倍の周波数の音が鳴ります。また、リコーダーやフルートのような管楽器でも、同じ運指で穴を塞いだまま、息の吹き込み方を変えることで、一番低い音の2倍、3倍の周波数の音を出すことができます。
この倍音の概念は、数学や物理学と密接に関わりながら定式化されてきました。その中で一つの核となる概念が「フーリエ級数」です。
実数変数の実数値関数φ(ファイ)が、周期Tを持つとします。すなわち、任意の実数xについてφ(x)=φ(x+T)が成り立つとします(φが満たすべきその他の性質は割愛します)。このとき、大雑把に言えば、φは、周期Tのsinとcos, 周期T/2のsinとcos, 周期T/3のsinとcos,...に適当な係数を掛けたものの和で表される、というのがフーリエ級数の概念です。ここで、周期と周波数は互いに逆数の関係にありますから、言い換えれば、周波数fの任意の波は、周波数fの正弦波, 周波数2fの正弦波, 周波数3fの正弦波,...の重ね合わせだということになります。(sin xやcos xのグラフと相似な波を正弦波と呼びます。)すなわち、周波数fの音の中には、周波数fの成分、周波数2fの成分、周波数3fの成分、・・・がすべて入っていることになるのです。また、逆に、周波数fの正弦波、周波数2fの正弦波、周波数3fの正弦波、・・・を適当なバランスで同時に鳴らすことで、周波数fの任意の音を作り出せるということにもなります。シンセサイザーを始めとする、電子的に音を作り出す楽器は、フーリエ級数の考え方を大いに活用して作られています。
ところで、倍音とは具体的な音名では何になるのでしょうか。まず、2倍音はオクターブ上の音となります。そして、以前にも述べたように、周波数の比が音高の差に一致しますから、オクターブずつ上に上がっていく音列は、2倍音、4倍音、8倍音・・・という音列となります。では2^n以外の倍音はどうでしょうか。3倍音は、オクターブと完全五度上の音、5倍音は2オクターブと長三度上の音となります。(厳密にはピアノなどの楽器で採用されている調律とは少しずれが生じます。)6倍音は3倍音の2倍ですから、2オクターブと完全五度上の音です。ということは、「ドミソ」という長三和音は、2オクターブ低いドの4,5,6倍音で構成されていると言え、比が大変きれいです。実際、「ドミソ」がいかに自然であるかの説明を倍音に求めた音楽理論家が数多くいます。
それでは、1,3,5や1,4,7など、n倍音側で等差数列になっている和音はどのような響きがするでしょうか?それはきれいに感じられるでしょうか?人間の感性の源をすべて数学的な秩序に求めるのは危険ですが、興味はつきません。
★このコラムでは、数学と音楽の両方に魅せられてきた筆者が、数学と音楽の共通点を考える中で見えてくる数学の魅力について、筆者なりの言葉でお伝えしていきます★
― 倍音列 ―
こんにちは。元K会数学科講師の布施音人です。
今回は倍音についての話をします。少し音楽に寄った話なので、馴染みのない方には分かりづらい話かもしれませんが、お付き合いください。
さて、みなさんは小学校でリコーダーを吹いたでしょうか?リコーダーで息を強く吹き込むと、出したかった音よりも高い音が「ピー!」と鳴ってしまったことはないでしょうか。例えば、低い「ミ」を鳴らそうと、左手の親指、人差し指、中指、薬指、右手の人差し指、中指で完全に穴を塞ぎ、強く吹くと、1オクターブ高い方の「ミ」が鳴ることがあります。この高い方の音は低い方の音の倍音であると言えます。
ある周波数fの音に対し、その倍音とは、fの2以上の整数倍(2f, 3f,...)の周波数を持つ音のことを言います。このとき、元の周波数fの音のことは基音と呼びます。基音と倍音とは密接な関係にあります。周波数fの音が鳴るように張られた弦があったとき、その弦は周波数2fの音や3fの音を鳴らすこともできます。これは弦楽器では「ハーモニクス」と呼ばれる奏法で、例えば弦の両端のちょうど中心に軽く指を押し当てながら、弦をはじくまたは弓で弾くと、指を押し当てていないときの音程の2倍の周波数の音が鳴ります。また、リコーダーやフルートのような管楽器でも、同じ運指で穴を塞いだまま、息の吹き込み方を変えることで、一番低い音の2倍、3倍の周波数の音を出すことができます。
この倍音の概念は、数学や物理学と密接に関わりながら定式化されてきました。その中で一つの核となる概念が「フーリエ級数」です。
実数変数の実数値関数φ(ファイ)が、周期Tを持つとします。すなわち、任意の実数xについてφ(x)=φ(x+T)が成り立つとします(φが満たすべきその他の性質は割愛します)。このとき、大雑把に言えば、φは、周期Tのsinとcos, 周期T/2のsinとcos, 周期T/3のsinとcos,...に適当な係数を掛けたものの和で表される、というのがフーリエ級数の概念です。ここで、周期と周波数は互いに逆数の関係にありますから、言い換えれば、周波数fの任意の波は、周波数fの正弦波, 周波数2fの正弦波, 周波数3fの正弦波,...の重ね合わせだということになります。(sin xやcos xのグラフと相似な波を正弦波と呼びます。)すなわち、周波数fの音の中には、周波数fの成分、周波数2fの成分、周波数3fの成分、・・・がすべて入っていることになるのです。また、逆に、周波数fの正弦波、周波数2fの正弦波、周波数3fの正弦波、・・・を適当なバランスで同時に鳴らすことで、周波数fの任意の音を作り出せるということにもなります。シンセサイザーを始めとする、電子的に音を作り出す楽器は、フーリエ級数の考え方を大いに活用して作られています。
ところで、倍音とは具体的な音名では何になるのでしょうか。まず、2倍音はオクターブ上の音となります。そして、以前にも述べたように、周波数の比が音高の差に一致しますから、オクターブずつ上に上がっていく音列は、2倍音、4倍音、8倍音・・・という音列となります。では2^n以外の倍音はどうでしょうか。3倍音は、オクターブと完全五度上の音、5倍音は2オクターブと長三度上の音となります。(厳密にはピアノなどの楽器で採用されている調律とは少しずれが生じます。)6倍音は3倍音の2倍ですから、2オクターブと完全五度上の音です。ということは、「ドミソ」という長三和音は、2オクターブ低いドの4,5,6倍音で構成されていると言え、比が大変きれいです。実際、「ドミソ」がいかに自然であるかの説明を倍音に求めた音楽理論家が数多くいます。
それでは、1,3,5や1,4,7など、n倍音側で等差数列になっている和音はどのような響きがするでしょうか?それはきれいに感じられるでしょうか?人間の感性の源をすべて数学的な秩序に求めるのは危険ですが、興味はつきません。
━【「現代数学の視座と眺望3」(元K会数学科講師:立原礼也) 】━
2024年8月14日 更新
━【現代数学の視座と眺望№2(K会元数学科講師:立原礼也) 】━
★「現代数学」、つまり大雑把には「大学の数学科レベルの数学」は、中高で習う数学と地続きに繋がっていながらも、様々な面で、全く新しい考え方に基づくものでもあります。筆者が数学を専攻することに決めたのも、この新しくも自然な考え方の数々に魅了されてのことでした。このコラムでは、現代数学におけるものの見方=「視座」、そしてそれによるものの見え方=「眺望」の解説を通じ、現代数学の魅力の一端をお伝えしていきます★
数学的構造と同型性
読者の皆さん、こんにちは。
K会数学科元講師の立原 礼也と申します。
第3回となる今回は、現代数学の重要な考え方である「数学的構造」(以下では単に「構造」と言います)の考え方、そして「同型」という考え方について、具体例を通じてご紹介したいと思います。
これらの概念の重要性は筆舌に尽くしがたいものであって、筆者としては「現代数学で最も重要な概念だ」と言い切ってしまいたいほどです。また、一見、前回までとは話題がガラリと変わるようですが、実は(今回は詳しく説明する余裕がありませんが)前回記事の「創造」(あるいは「シミュレート」)の話題とも切り離せない関係があります。
さて、実は、「同型」というのは、数学に限らず、我々の日常生活にも見出すことができる、人間の認知の根本にかかわるともいえる概念です。そして、この「同型」の概念に数学的に厳密な定式化を与えることは、「構造」を考えるに至る動機の重要な一つとなっています。
そういうわけですから、「構造」の説明のためにも、まず「同型」の概念を具体例を用いて説明するところから始めましょう。(なお、余談ですが、この「同型」の概念は、その重要性にも関わらず、数学の教科書ではあっさりとした紹介で済まされてしまっていることも多いのですが、K会の現代数学講座のテキストではきちんと紙面を割いて丁寧に解説を行っています。)
説明の整理のために、内容を複数の節にわけさせてください。
(A)ゲームの同型
それでは本題に入りましょう。
「同型」の概念の、具体例による解説です。節タイトルの通り、「ゲーム」の例を用いた説明を試みます。これは数学的な例というよりは、むしろ日常生活に近い例になっています。また、その事情から推察可能な通り、我々はこの文脈における「ゲーム」という概念自体を数学的に正確な形で定式化するわけではありませんので、その結果、残念ながら、以下の例に関して数学的に厳密な議論はできません。それでも、この例を通じて、「同型」というのが大体どういう概念なのかは伝わるかと思います。
では唐突ですが、次のようなゲームを考えて、それをゲームJと呼びましょう。
*****ゲームJのルール*****
(J-0)2人のプレイヤーで行う。各プレイヤーは、「石」「ハサミ」「紙」と書かれたカードを1枚ずつ、計3枚持っている。
(J-1)各プレイヤーは、自分の持っているカードから1枚を、公開せずに選択する。
(J-2)各プレイヤーが選択したカードが同時に公開される。
(J-3)公開された2枚のカードの組合せが
「石」と「ハサミ」ならば、「石」を選択したプレイヤーの勝利となる。
「ハサミ」と「紙」ならば、「ハサミ」を選択したプレイヤーの勝利となる。
「紙」と「石」ならば、「紙」を選択したプレイヤーの勝利となる。
それ以外の場合は、引き分けとなる。
**********
お察しの方もいらっしゃるかと思いますが、ゲームJは、世間では「じゃんけん」と呼ばれているもの(を、記述の都合上、カードを用いて再現したもの)です。(英語圏のじゃんけんでは、グーが石、チョキがハサミ、パーが紙となっています。)
今度は、また突然ですが、ゲームJとはまた別の、ゲームPについても考えてみましょう。
*****ゲームPのルール*****
(P-0)2人のプレイヤーで行う。各プレイヤーは、「炎」「草」「水」と書かれたカードを1枚ずつ、計3枚持っている。
(P-1)各プレイヤーは、自分の持っているカードから1枚を、公開せずに選択する。
(P-2)各プレイヤーが選択したカードが同時に公開される。
(P-3)公開された2枚のカードの組合せが
「炎」と「草」ならば、「炎」を選択したプレイヤーの勝利となる。
「草」と「水」ならば、「草」を選択したプレイヤーの勝利となる。
「水」と「炎」ならば、「水」を選択したプレイヤーの勝利となる。
それ以外の場合は、引き分けとなる。
(ゲームPは、ある有名な電子ゲームの内容のごく一部を切り取って、大幅に単純化したものになっています。)
ゲームJとゲームPは、もちろん、違うゲームです。ゲームJには「紙」が出てきますが、ゲームPには「紙」は出てきません。ゲームPには「炎」が出てきますが、ゲームJには「炎」は出てきません。こういった違いがありますから、これらのゲームは、確かに、違うゲームなのです。
しかし、見比べてみると、読者は、ゲームJとゲームPが「見た目は違うかもしれないけれど、実質的には同じ内容のゲーム」である、ということに気付くのではないでしょうか。(ピンとこなかった読者は、改めてゲームJとゲームPの内容を確認した上で読み進めてください。)つまり、ゲームJの性質を分析したければゲームPを代わりに分析してもよいし、逆も然りだ、といったことには納得がいくと思います。また、「3すくみ」という概念を知っていて、「ゲームJもゲームPも、つまり結局、3すくみだ」という理解に到達した読者もいるでしょう。
この「見た目は違うかもしれないけれど、実質的には同じ内容」という認識の数学的な定式化が、「同型」という概念なのです。
もう少し掘り下げて考えてみましょう。
ゲームJとゲームPは違うゲームなのに、それらが「実質的には同じ内容」に見えるのは、何故でしょうか?
それは、「違いが些細なものだから」ということになるでしょう。ゲームJとゲームPの違いは「カード(選択肢)の名前」にあります。つまり、ゲームJでは「石」「ハサミ」「紙」が選択肢だけれども、ゲームPでは「炎」「草」「水」が選択肢で、名前が違うということです。でも、違いは、名前だけなのです。つまり、ゲームJにおいて、「石」という名前を「炎」という名前に、「ハサミ」という名前を「草」という名前に、そして「紙」という名前を「水」という名前に書き換えてしまいますと、その内容は完全にゲームPの内容になってしまう、ということです。(是非、実際にルールを見返してみて、「書き換え」の操作を実行してみてください。)
当たり前のことですが、この「選択肢の名称の書き換え」という操作は、ゲームの実質的な内容には変化をもたらしません。その程度の操作でゲームJがゲームPになってしまう以上、最初からとその2つのゲームは実質的には同じ内容だったのだ、ということになるわけなのです。
これが、ゲームJとゲームPがゲームとして同型だ、ということです。
(B)同型という概念とその使い方
ゲームに限らず、数体系(つまり、大雑把に言うと、数の集合)などの様々な数学的設定において、「同型」の概念を考えることができます。
前節で述べた通り、ある2つの数学的設定が同型だというのは、その文脈における考察下の実質的な内容には変化をもたらさない「名称の書き換え」を一方に施すだけで、他方と同じになってしまうことだ、と説明することができます。(ただし、数学的文脈では、「名称の書き換え」というより「記号の書き換え」といった方が馴染む例が多いかもしれません。)
そして、この説明に出てくる、当該文脈で着目している「実質的な内容」のことを、その設定の「構造」と呼んでいます。ですから、2つの数学的設定が同型だというのは、それらが本質的に同じ構造をしていることだ、と言えると思います。
そして、重要なのは、「同型な2つの数学的設定に関しては、一方の分析を他方の分析に帰着することができる」という考え方です(これについては、上のゲームの例を通じて、「まあ何となく、そうかな」くらいに思って頂ければ問題ありません)。更に、上の例でゲームJとゲームPが同型だったのはかなり当たり前でしたが、それとは違って、「一見、全然同型に見えないものが、実は驚くべきことに同型になる」といった状況も沢山あります。ですから、ひとたびそうした同型が証明できると、「Xのことを調べたいが全然よくわからない→驚くべきことにXとYが同型なので、そのおかげで、代わりにYを調べればよい→Yのことは頑張れば調べられる(ので、Xのことがわかる)」という方向性の議論によって、新たな数学的知見が得られることもしばしばあるのです。
こういうわけですので、「同型」は現代数学において非常に中心的な地位にある概念となっています。現代数学の様々な重要な定理や未解決問題の中にも、「これとこれが(驚くべきことに)同型である」という形で定式化可能なものも沢山あります。
(C)指数・対数関数がもたらす同型とその使い方
最後になりますが、抽象的な話だけで終わらせるのは気が引けますので、(数学的な詳細な議論には立ち入りませんが)一つ「驚くべき同型」の古典的な、初等的な例を挙げてみましょう。それは節タイトルの通り、指数・対数関数がもたらす同型です。
説明のための前提知識の復習になりますが、実数とは、いわゆる「数直線上にある数」、「(マイナスも含めた)普通の数」のことです。例えば0,1,2,3,...や-1,-2,-3,...といった整数は全部実数ですし、それらの割り算としてできる2分の1などの分数(有理数)も実数です。更にルート2や円周率などの、有理数ではない実数(無理数)も沢山存在します。
実数全体の集合(実数は全部入っていて、他のものは一切何も入っていない集合)は、数直線としてイメージすることができます。数直線上の1つ1つの点が、実数に対応しています。(集合という言葉を使いましたが、これは「集まり」という意味だと思っていただいて差支えありません。)したがってまた、正(プラス)の実数全体の集合は、数直線の0より右側の部分としてイメージすることができます。
高校数学で習う指数・対数関数を使うと、次のような2つの数学的設定XとYが同型になることが確かめられます(台集合という言葉は後で説明します)。なお、同型になる理由は詳しく説明しませんが、興味のある方は、本記事最後の補足も参考にしてみてください。
***** X *****
台集合=正の実数全体の集合
構造=(普通の、いつも通りの)掛け算
******
**** Y ****
台集合=実数全体の集合
構造=(普通の、いつも通りの)足し算
******
台集合というのは、その数学的設定の土台となる集合のことです。例えば、節(A)のゲームJの場合、台集合は3つの要素「石」「ハサミ」「紙」からなる集合{石、ハサミ、紙}です。また、ゲームPの場合、台集合は3つの要素からなる集合{炎、草、水}です。
ゲームの例では、ゲームのルール(台集合の2つの要素間の勝敗関係)を構造として考えていましたが、上のXやYでは計算ルールを構造にしています。なお、Xの台集合である正の実数全体の集合で足し算を考えたり、逆にYの台集合である実数全体の集合で掛け算を考えたりすることも可能ですし、更にまた別の計算ルールも色々考えられるのですが、そういった様々有り得る他の計算ルールは一切無視して、Xでは掛け算、Yでは足し算だけに注目している、というのが非常に大切なポイントです。
XとYは、台集合は一見似ているかもしれませんが、構造は、かたや掛け算、かたや足し算で、全然違います。ですから、これらが同型だというのは、本来それなりに驚くべき事実なのではないでしょうか。
「掛け算の計算は、足し算の計算よりも、かなり面倒くさい」ということは、読者も経験的によくご存知だと思います。つまり、数学的設定Xの構造は、数学的設定Yの構造よりも、一見かなり面倒くさいものなのです。しかし、指数・対数関数を使ってこれらが同型になりますので、本来非常に面倒くさいXにおける掛け算の計算を、それに比べると簡単なYにおける足し算の計算に帰着することができるようになるのです!
ただし、帰着のためには、同型の確認に使った指数・対数関数をあらかじめ計算しておく必要はあります。そのあらかじめ計算しておいたものをまとめた表は「対数表」と呼ばれます。15世紀後半に、指数・対数関数、そしてこの対数表の発明によって、大きな(天文学的な!)数の複雑な掛け算の計算を、ずっと簡単な足し算の計算に帰着できるようになりました。実際、対数関数や対数表の発明の動機には、天文学の研究における計算の効率化があったようです。
このような初等的な例でも、物事を「(数学的)構造」で捉えて、そして「同型」という概念・考え方を適用する、その威力がわかるのではないでしょうか。
そして現代数学では、前回記事に述べたように数学者自らの手でいくらでも多くの数学的対象を創造することができるようになるため、この「同型」の概念・考え方の適用範囲もそれに伴っていくらでも拡がり、ますますこの概念・考え方が重要になるのです。
******
(補足)集合を用いた「同型」の定式化
かなり数学的な補足になりますが、意欲ある読者に向けて、実際の数学的文脈では「同型」をどのように定式化するのか、ということをご説明したいと思います。
(A)節で論じた「名称の書き換え」は、(C)節で導入した「台集合」の概念を使うと、「台集合の間の一対一対応」と理解することができます。つまり、「石を炎に、ハサミを草に、紙を水に、名称を書き換える」という操作は、数学的には、次のような一対一対応として理解できます。
石 --(1)-- 炎
ハサミ --(2)-- 草
紙 --(3)-- 水
(一対一対応というのは、{石、ハサミ、紙}の要素も、{炎、草、水}の要素も、どちらも余らせたり重複させたりせず、全部がちょうど一回ずつ出てくるような対応のさせ方、ということです。同じ意味で全単射という言葉を使うこともあります。他にも「石と炎、ハサミと水、紙と草」なども一対一対応です。)
そして、この一対一対応を通じて、要素だけではなくゲーム構造もきちんと対応しています。
つまり例えば、
石 --(1)-- 炎
紙 --(3)-- 水
という対応を通じて、
「紙が石に勝つ」という事実と「水が炎に勝つ」という事実も、「(3)が(1)に勝つ」という意味で、対応するようになっています。(1)と(3)だけでなく、全ての組合せ(つまり、(2)と(3)や、(1)と(1)、等々)で、常にこのようなゲーム構造の整合性も成り立っています。この整合性の成立が、(A)節の説明における「名称の書き換えだけで、ゲームの内容が同じになってしまう」という指摘に相当します。
一般に、数学的設定XとYが同型である、という言葉は、このような「台集合の間の、構造と整合的な一対一対応」(同型対応と呼びます)の存在を意味するものとして理解できます。
(C)節で例示したXとYの場合、同型対応を作るとはどういうことかというと、Xの下部集合の各要素xに対してYの下部集合の要素f(x)をうまく決めることで、一対一対応で、かつ常にf(ab)=f(a)+f(b)が成り立つようにすることです。ここで対数関数が使えるのです。
******
(意欲ある読者に向けた、答えのない演習問題)
1.今回の記事の冒頭に、「同型」つまり「本質的には同じ構造をしている」というのは、我々の日常生活にも普通に見出すことができる、人間の認知の根本にかかわるともいえる概念だと述べました。そこで、そうした日常生活に見出される「同型」の例を、探したり考えたりしてみてください。
なお、本文で紹介したゲームの例よりも更に比喩的(非数学的)な例として、「一言一句同じ内容が書かれているが、紙やインクの材質が異なる2冊の本」は、何らかの意味では「同型」と言えるだろう、という例が挙げられると思います。こういった比喩的な例も含めて探したり考えたりしてみてください。
2.補足の内容に関する問題です。ゲームJとゲームPの間の同型対応としては、先程は「石と炎、ハサミと草、紙と水」を用いましたが、「石と草、ハサミと水、紙と炎」でも構いません。このことについて考えて納得してみてください。また、他にも可能な同型対応は存在するのですが、思いつきますか?
一方、「石と炎、ハサミと炎、紙と水」は不適切です(炎が重複して、草が余ってしまっていて、そもそも1対1対応になっていません)。他に、「石と炎、ハサミと水、紙と草」は、1対1対応になっているにも関わらず不適切ですが、なぜかわかりますか?他の「1対1対応にはなっているけど、同型対応にはなっていない」例は思いつきますか?
★「現代数学」、つまり大雑把には「大学の数学科レベルの数学」は、中高で習う数学と地続きに繋がっていながらも、様々な面で、全く新しい考え方に基づくものでもあります。筆者が数学を専攻することに決めたのも、この新しくも自然な考え方の数々に魅了されてのことでした。このコラムでは、現代数学におけるものの見方=「視座」、そしてそれによるものの見え方=「眺望」の解説を通じ、現代数学の魅力の一端をお伝えしていきます★
数学的構造と同型性
読者の皆さん、こんにちは。
K会数学科元講師の立原 礼也と申します。
第3回となる今回は、現代数学の重要な考え方である「数学的構造」(以下では単に「構造」と言います)の考え方、そして「同型」という考え方について、具体例を通じてご紹介したいと思います。
これらの概念の重要性は筆舌に尽くしがたいものであって、筆者としては「現代数学で最も重要な概念だ」と言い切ってしまいたいほどです。また、一見、前回までとは話題がガラリと変わるようですが、実は(今回は詳しく説明する余裕がありませんが)前回記事の「創造」(あるいは「シミュレート」)の話題とも切り離せない関係があります。
さて、実は、「同型」というのは、数学に限らず、我々の日常生活にも見出すことができる、人間の認知の根本にかかわるともいえる概念です。そして、この「同型」の概念に数学的に厳密な定式化を与えることは、「構造」を考えるに至る動機の重要な一つとなっています。
そういうわけですから、「構造」の説明のためにも、まず「同型」の概念を具体例を用いて説明するところから始めましょう。(なお、余談ですが、この「同型」の概念は、その重要性にも関わらず、数学の教科書ではあっさりとした紹介で済まされてしまっていることも多いのですが、K会の現代数学講座のテキストではきちんと紙面を割いて丁寧に解説を行っています。)
説明の整理のために、内容を複数の節にわけさせてください。
(A)ゲームの同型
それでは本題に入りましょう。
「同型」の概念の、具体例による解説です。節タイトルの通り、「ゲーム」の例を用いた説明を試みます。これは数学的な例というよりは、むしろ日常生活に近い例になっています。また、その事情から推察可能な通り、我々はこの文脈における「ゲーム」という概念自体を数学的に正確な形で定式化するわけではありませんので、その結果、残念ながら、以下の例に関して数学的に厳密な議論はできません。それでも、この例を通じて、「同型」というのが大体どういう概念なのかは伝わるかと思います。
では唐突ですが、次のようなゲームを考えて、それをゲームJと呼びましょう。
*****ゲームJのルール*****
(J-0)2人のプレイヤーで行う。各プレイヤーは、「石」「ハサミ」「紙」と書かれたカードを1枚ずつ、計3枚持っている。
(J-1)各プレイヤーは、自分の持っているカードから1枚を、公開せずに選択する。
(J-2)各プレイヤーが選択したカードが同時に公開される。
(J-3)公開された2枚のカードの組合せが
「石」と「ハサミ」ならば、「石」を選択したプレイヤーの勝利となる。
「ハサミ」と「紙」ならば、「ハサミ」を選択したプレイヤーの勝利となる。
「紙」と「石」ならば、「紙」を選択したプレイヤーの勝利となる。
それ以外の場合は、引き分けとなる。
**********
お察しの方もいらっしゃるかと思いますが、ゲームJは、世間では「じゃんけん」と呼ばれているもの(を、記述の都合上、カードを用いて再現したもの)です。(英語圏のじゃんけんでは、グーが石、チョキがハサミ、パーが紙となっています。)
今度は、また突然ですが、ゲームJとはまた別の、ゲームPについても考えてみましょう。
*****ゲームPのルール*****
(P-0)2人のプレイヤーで行う。各プレイヤーは、「炎」「草」「水」と書かれたカードを1枚ずつ、計3枚持っている。
(P-1)各プレイヤーは、自分の持っているカードから1枚を、公開せずに選択する。
(P-2)各プレイヤーが選択したカードが同時に公開される。
(P-3)公開された2枚のカードの組合せが
「炎」と「草」ならば、「炎」を選択したプレイヤーの勝利となる。
「草」と「水」ならば、「草」を選択したプレイヤーの勝利となる。
「水」と「炎」ならば、「水」を選択したプレイヤーの勝利となる。
それ以外の場合は、引き分けとなる。
(ゲームPは、ある有名な電子ゲームの内容のごく一部を切り取って、大幅に単純化したものになっています。)
ゲームJとゲームPは、もちろん、違うゲームです。ゲームJには「紙」が出てきますが、ゲームPには「紙」は出てきません。ゲームPには「炎」が出てきますが、ゲームJには「炎」は出てきません。こういった違いがありますから、これらのゲームは、確かに、違うゲームなのです。
しかし、見比べてみると、読者は、ゲームJとゲームPが「見た目は違うかもしれないけれど、実質的には同じ内容のゲーム」である、ということに気付くのではないでしょうか。(ピンとこなかった読者は、改めてゲームJとゲームPの内容を確認した上で読み進めてください。)つまり、ゲームJの性質を分析したければゲームPを代わりに分析してもよいし、逆も然りだ、といったことには納得がいくと思います。また、「3すくみ」という概念を知っていて、「ゲームJもゲームPも、つまり結局、3すくみだ」という理解に到達した読者もいるでしょう。
この「見た目は違うかもしれないけれど、実質的には同じ内容」という認識の数学的な定式化が、「同型」という概念なのです。
もう少し掘り下げて考えてみましょう。
ゲームJとゲームPは違うゲームなのに、それらが「実質的には同じ内容」に見えるのは、何故でしょうか?
それは、「違いが些細なものだから」ということになるでしょう。ゲームJとゲームPの違いは「カード(選択肢)の名前」にあります。つまり、ゲームJでは「石」「ハサミ」「紙」が選択肢だけれども、ゲームPでは「炎」「草」「水」が選択肢で、名前が違うということです。でも、違いは、名前だけなのです。つまり、ゲームJにおいて、「石」という名前を「炎」という名前に、「ハサミ」という名前を「草」という名前に、そして「紙」という名前を「水」という名前に書き換えてしまいますと、その内容は完全にゲームPの内容になってしまう、ということです。(是非、実際にルールを見返してみて、「書き換え」の操作を実行してみてください。)
当たり前のことですが、この「選択肢の名称の書き換え」という操作は、ゲームの実質的な内容には変化をもたらしません。その程度の操作でゲームJがゲームPになってしまう以上、最初からとその2つのゲームは実質的には同じ内容だったのだ、ということになるわけなのです。
これが、ゲームJとゲームPがゲームとして同型だ、ということです。
(B)同型という概念とその使い方
ゲームに限らず、数体系(つまり、大雑把に言うと、数の集合)などの様々な数学的設定において、「同型」の概念を考えることができます。
前節で述べた通り、ある2つの数学的設定が同型だというのは、その文脈における考察下の実質的な内容には変化をもたらさない「名称の書き換え」を一方に施すだけで、他方と同じになってしまうことだ、と説明することができます。(ただし、数学的文脈では、「名称の書き換え」というより「記号の書き換え」といった方が馴染む例が多いかもしれません。)
そして、この説明に出てくる、当該文脈で着目している「実質的な内容」のことを、その設定の「構造」と呼んでいます。ですから、2つの数学的設定が同型だというのは、それらが本質的に同じ構造をしていることだ、と言えると思います。
そして、重要なのは、「同型な2つの数学的設定に関しては、一方の分析を他方の分析に帰着することができる」という考え方です(これについては、上のゲームの例を通じて、「まあ何となく、そうかな」くらいに思って頂ければ問題ありません)。更に、上の例でゲームJとゲームPが同型だったのはかなり当たり前でしたが、それとは違って、「一見、全然同型に見えないものが、実は驚くべきことに同型になる」といった状況も沢山あります。ですから、ひとたびそうした同型が証明できると、「Xのことを調べたいが全然よくわからない→驚くべきことにXとYが同型なので、そのおかげで、代わりにYを調べればよい→Yのことは頑張れば調べられる(ので、Xのことがわかる)」という方向性の議論によって、新たな数学的知見が得られることもしばしばあるのです。
こういうわけですので、「同型」は現代数学において非常に中心的な地位にある概念となっています。現代数学の様々な重要な定理や未解決問題の中にも、「これとこれが(驚くべきことに)同型である」という形で定式化可能なものも沢山あります。
(C)指数・対数関数がもたらす同型とその使い方
最後になりますが、抽象的な話だけで終わらせるのは気が引けますので、(数学的な詳細な議論には立ち入りませんが)一つ「驚くべき同型」の古典的な、初等的な例を挙げてみましょう。それは節タイトルの通り、指数・対数関数がもたらす同型です。
説明のための前提知識の復習になりますが、実数とは、いわゆる「数直線上にある数」、「(マイナスも含めた)普通の数」のことです。例えば0,1,2,3,...や-1,-2,-3,...といった整数は全部実数ですし、それらの割り算としてできる2分の1などの分数(有理数)も実数です。更にルート2や円周率などの、有理数ではない実数(無理数)も沢山存在します。
実数全体の集合(実数は全部入っていて、他のものは一切何も入っていない集合)は、数直線としてイメージすることができます。数直線上の1つ1つの点が、実数に対応しています。(集合という言葉を使いましたが、これは「集まり」という意味だと思っていただいて差支えありません。)したがってまた、正(プラス)の実数全体の集合は、数直線の0より右側の部分としてイメージすることができます。
高校数学で習う指数・対数関数を使うと、次のような2つの数学的設定XとYが同型になることが確かめられます(台集合という言葉は後で説明します)。なお、同型になる理由は詳しく説明しませんが、興味のある方は、本記事最後の補足も参考にしてみてください。
***** X *****
台集合=正の実数全体の集合
構造=(普通の、いつも通りの)掛け算
******
**** Y ****
台集合=実数全体の集合
構造=(普通の、いつも通りの)足し算
******
台集合というのは、その数学的設定の土台となる集合のことです。例えば、節(A)のゲームJの場合、台集合は3つの要素「石」「ハサミ」「紙」からなる集合{石、ハサミ、紙}です。また、ゲームPの場合、台集合は3つの要素からなる集合{炎、草、水}です。
ゲームの例では、ゲームのルール(台集合の2つの要素間の勝敗関係)を構造として考えていましたが、上のXやYでは計算ルールを構造にしています。なお、Xの台集合である正の実数全体の集合で足し算を考えたり、逆にYの台集合である実数全体の集合で掛け算を考えたりすることも可能ですし、更にまた別の計算ルールも色々考えられるのですが、そういった様々有り得る他の計算ルールは一切無視して、Xでは掛け算、Yでは足し算だけに注目している、というのが非常に大切なポイントです。
XとYは、台集合は一見似ているかもしれませんが、構造は、かたや掛け算、かたや足し算で、全然違います。ですから、これらが同型だというのは、本来それなりに驚くべき事実なのではないでしょうか。
「掛け算の計算は、足し算の計算よりも、かなり面倒くさい」ということは、読者も経験的によくご存知だと思います。つまり、数学的設定Xの構造は、数学的設定Yの構造よりも、一見かなり面倒くさいものなのです。しかし、指数・対数関数を使ってこれらが同型になりますので、本来非常に面倒くさいXにおける掛け算の計算を、それに比べると簡単なYにおける足し算の計算に帰着することができるようになるのです!
ただし、帰着のためには、同型の確認に使った指数・対数関数をあらかじめ計算しておく必要はあります。そのあらかじめ計算しておいたものをまとめた表は「対数表」と呼ばれます。15世紀後半に、指数・対数関数、そしてこの対数表の発明によって、大きな(天文学的な!)数の複雑な掛け算の計算を、ずっと簡単な足し算の計算に帰着できるようになりました。実際、対数関数や対数表の発明の動機には、天文学の研究における計算の効率化があったようです。
このような初等的な例でも、物事を「(数学的)構造」で捉えて、そして「同型」という概念・考え方を適用する、その威力がわかるのではないでしょうか。
そして現代数学では、前回記事に述べたように数学者自らの手でいくらでも多くの数学的対象を創造することができるようになるため、この「同型」の概念・考え方の適用範囲もそれに伴っていくらでも拡がり、ますますこの概念・考え方が重要になるのです。
******
(補足)集合を用いた「同型」の定式化
かなり数学的な補足になりますが、意欲ある読者に向けて、実際の数学的文脈では「同型」をどのように定式化するのか、ということをご説明したいと思います。
(A)節で論じた「名称の書き換え」は、(C)節で導入した「台集合」の概念を使うと、「台集合の間の一対一対応」と理解することができます。つまり、「石を炎に、ハサミを草に、紙を水に、名称を書き換える」という操作は、数学的には、次のような一対一対応として理解できます。
石 --(1)-- 炎
ハサミ --(2)-- 草
紙 --(3)-- 水
(一対一対応というのは、{石、ハサミ、紙}の要素も、{炎、草、水}の要素も、どちらも余らせたり重複させたりせず、全部がちょうど一回ずつ出てくるような対応のさせ方、ということです。同じ意味で全単射という言葉を使うこともあります。他にも「石と炎、ハサミと水、紙と草」なども一対一対応です。)
そして、この一対一対応を通じて、要素だけではなくゲーム構造もきちんと対応しています。
つまり例えば、
石 --(1)-- 炎
紙 --(3)-- 水
という対応を通じて、
「紙が石に勝つ」という事実と「水が炎に勝つ」という事実も、「(3)が(1)に勝つ」という意味で、対応するようになっています。(1)と(3)だけでなく、全ての組合せ(つまり、(2)と(3)や、(1)と(1)、等々)で、常にこのようなゲーム構造の整合性も成り立っています。この整合性の成立が、(A)節の説明における「名称の書き換えだけで、ゲームの内容が同じになってしまう」という指摘に相当します。
一般に、数学的設定XとYが同型である、という言葉は、このような「台集合の間の、構造と整合的な一対一対応」(同型対応と呼びます)の存在を意味するものとして理解できます。
(C)節で例示したXとYの場合、同型対応を作るとはどういうことかというと、Xの下部集合の各要素xに対してYの下部集合の要素f(x)をうまく決めることで、一対一対応で、かつ常にf(ab)=f(a)+f(b)が成り立つようにすることです。ここで対数関数が使えるのです。
******
(意欲ある読者に向けた、答えのない演習問題)
1.今回の記事の冒頭に、「同型」つまり「本質的には同じ構造をしている」というのは、我々の日常生活にも普通に見出すことができる、人間の認知の根本にかかわるともいえる概念だと述べました。そこで、そうした日常生活に見出される「同型」の例を、探したり考えたりしてみてください。
なお、本文で紹介したゲームの例よりも更に比喩的(非数学的)な例として、「一言一句同じ内容が書かれているが、紙やインクの材質が異なる2冊の本」は、何らかの意味では「同型」と言えるだろう、という例が挙げられると思います。こういった比喩的な例も含めて探したり考えたりしてみてください。
2.補足の内容に関する問題です。ゲームJとゲームPの間の同型対応としては、先程は「石と炎、ハサミと草、紙と水」を用いましたが、「石と草、ハサミと水、紙と炎」でも構いません。このことについて考えて納得してみてください。また、他にも可能な同型対応は存在するのですが、思いつきますか?
一方、「石と炎、ハサミと炎、紙と水」は不適切です(炎が重複して、草が余ってしまっていて、そもそも1対1対応になっていません)。他に、「石と炎、ハサミと水、紙と草」は、1対1対応になっているにも関わらず不適切ですが、なぜかわかりますか?他の「1対1対応にはなっているけど、同型対応にはなっていない」例は思いつきますか?
★夏期セミナー/情報科学体験授業★
2024年7月24日 更新
7月27日(土)まもなく開催!!
10:00-11:30 情報科学体験授業
13:00-15:00 夏期セミナー『確率の魅力』
どちらも、開催前日の7月26日(金)19:00までお申し込みを承ります。
暑い日が続いていますので、授業中であっても適宜水分補給をしながらご参加ください。
また、午前・午後と連続でご参加いただく皆さまには昼食会場として教室をご用意しています。
お弁当などをお持ちいただきましたら、外に出ることなく涼しい校舎でお過ごしいただけます。
持ち物はどちらも筆記用具のみです。
特にセミナーは親子やお友達同士でご参加いただけますので、気軽にお越しください。
皆さまのご参加をお待ちしております!
お申込・お問合せ
K会事務局 ☎03-3813-4581
受付時間 火~土曜日(13:00-19:00)
10:00-11:30 情報科学体験授業
13:00-15:00 夏期セミナー『確率の魅力』
どちらも、開催前日の7月26日(金)19:00までお申し込みを承ります。
暑い日が続いていますので、授業中であっても適宜水分補給をしながらご参加ください。
また、午前・午後と連続でご参加いただく皆さまには昼食会場として教室をご用意しています。
お弁当などをお持ちいただきましたら、外に出ることなく涼しい校舎でお過ごしいただけます。
持ち物はどちらも筆記用具のみです。
特にセミナーは親子やお友達同士でご参加いただけますので、気軽にお越しください。
皆さまのご参加をお待ちしております!
お申込・お問合せ
K会事務局 ☎03-3813-4581
受付時間 火~土曜日(13:00-19:00)
★夏期講習のお知らせ④★
2024年7月23日 更新
みなさんこんにちは。K会事務局です!
夏期講習の開始まで1週間を切りました!
第1ターム(7/30~8/2)の講座は7/27(土)19:00までがお申込期限です。
特に「結び目理論」「数学オリンピックに学ぶ証明問題の考え方(対面)」は締切間近です。
✕:締切 ▼:残り3名以下 △:残り10名以下 〇:残り10名以上
※数学オリンピックに学ぶ証明問題の考え方の映像受講については定員は関係ございません
※講座の詳細はこちらから
また、5ターム「Pythonではじめるプログラミング入門」も締切間近となりました。
こちらの申込期限は8/17(土)となっておりますが、定員に達し次第申し込みは終了といたします。
暑い日が続いています。講習受講の際は授業中であっても適度に水分補給を心がけましょう。
お飲み物を忘れた場合は、5階にある自動販売機でご購入いただけます。
また、教室の寒い・暑いなどは遠慮なく講師へお申し出ください。空調を調整いたします。
一方で、寒い暑いの感覚はそれぞれ異なります。自由席ですので冷房が丁度良い位置に移動したり、寒い場合は一枚羽織るものを用意するなど、ご自身でも快適に過ごせるように調節をお願いします。
※マスクの着用はスタッフ・講師を含め任意としております。
それでは、夏期講習で皆さんにお会いできることを楽しみにしております♪
お申込・お問合せ
K会事務局 ☎03-3813-4581
受付時間 火~土曜日(13:00-19:00)
夏期講習の開始まで1週間を切りました!
第1ターム(7/30~8/2)の講座は7/27(土)19:00までがお申込期限です。
特に「結び目理論」「数学オリンピックに学ぶ証明問題の考え方(対面)」は締切間近です。
ターム | 時限 | 講座名 | 空き状況 |
---|---|---|---|
1 | 1 | 化学で世界を理解する | △ |
1 | 2 | 結び目理論 | ▼ |
1 | 2 | 数学オリンピックに学ぶ証明問題の考え方 | ▼ |
1 | 2 | 地理オリンピック国内予選問題研究会2024 | 〇 |
2 | 1 | 座標幾何 | 〇 |
2 | 1 | 情報オリンピック予選問題に挑戦! | △ |
2 | 1 | 言語学オリンピックで入門する音韻論 | △ |
2 | 2 | 極限 | 〇 |
2 | 2 | 形式言語理論と数理言語学 | △ |
3 | 1 | 数 | △ |
3 | 1 | 英語で読むNIPPON論 | 〇 |
3 | 2 | 整数論 | 〇 |
3 | 2 | 論理回路入門 | 〇 |
3 | 2 | 神経科学と精神医学 | 〇 |
4 | 1 | 初等幾何 | 〇 |
4 | 1 | 地質学 | 〇 |
4 | 1 | 古生物学 | 〇 |
4 | 2 | フィボナッチ数 | 〇 |
4 | 2 | Pythonではじめるプログラミング入門 | ▼ |
4 | 2 | 物理数学 | 〇 |
※数学オリンピックに学ぶ証明問題の考え方の映像受講については定員は関係ございません
※講座の詳細はこちらから
また、5ターム「Pythonではじめるプログラミング入門」も締切間近となりました。
こちらの申込期限は8/17(土)となっておりますが、定員に達し次第申し込みは終了といたします。
暑い日が続いています。講習受講の際は授業中であっても適度に水分補給を心がけましょう。
お飲み物を忘れた場合は、5階にある自動販売機でご購入いただけます。
また、教室の寒い・暑いなどは遠慮なく講師へお申し出ください。空調を調整いたします。
一方で、寒い暑いの感覚はそれぞれ異なります。自由席ですので冷房が丁度良い位置に移動したり、寒い場合は一枚羽織るものを用意するなど、ご自身でも快適に過ごせるように調節をお願いします。
※マスクの着用はスタッフ・講師を含め任意としております。
それでは、夏期講習で皆さんにお会いできることを楽しみにしております♪
お申込・お問合せ
K会事務局 ☎03-3813-4581
受付時間 火~土曜日(13:00-19:00)
★情報科学体験授業のご案内★
2024年7月16日 更新
みなさんこんにちは。K会事務局です!
7月27日(土)10:00~11:30 情報科学コース体験授業
対象:プログラミング初心者の中高生
料金:無料
K会では初心者であってもコードを書く、本格的なプログラミングを学びます。
また、PCの構造や、ネットワークについてなどPCにまつわることを幅広く学ぶことが特徴です。
単なる、プログラミング塾ではありません!
講師は東京大学や大学院の在卒生を中心に、情報関係の資格取得者や、各種コンテストの受賞者です。
それぞれ得意な分野は異なりますが、情報科学について、幅広い知識と経験を持つ講師が指導します!
体験授業では円を動かすアニメーションに挑戦します。
使うプログラミング言語はProcessingという初心者にも扱いやすい言語です。
コンピュータに出す、指示の書き方の基礎を学び、実際に自分でプログラムを書いてみましょう。
作品のイメージはこちら(※イメージ作品は24年春のお知らせのものです)
自分の書いたプログラムが動く感動をぜひご体験下さい!!
体験授業を経て、2学期入会を決めて下さった方は夏期講習の
「Pythonではじめるプログラミング入門」
をご受講いただくと比較的スムースに2学期に合流することができます。体験授業と合わせてご検討下さい!
皆さんのご参加・ご受講をお待ちしております。
お申込・お問合せ
K会事務局 ☎03-3813-4581
受付時間 火~土曜日(13:00-19:00)
7月27日(土)10:00~11:30 情報科学コース体験授業
対象:プログラミング初心者の中高生
料金:無料
K会では初心者であってもコードを書く、本格的なプログラミングを学びます。
また、PCの構造や、ネットワークについてなどPCにまつわることを幅広く学ぶことが特徴です。
単なる、プログラミング塾ではありません!
講師は東京大学や大学院の在卒生を中心に、情報関係の資格取得者や、各種コンテストの受賞者です。
それぞれ得意な分野は異なりますが、情報科学について、幅広い知識と経験を持つ講師が指導します!
体験授業では円を動かすアニメーションに挑戦します。
使うプログラミング言語はProcessingという初心者にも扱いやすい言語です。
コンピュータに出す、指示の書き方の基礎を学び、実際に自分でプログラムを書いてみましょう。
作品のイメージはこちら(※イメージ作品は24年春のお知らせのものです)
自分の書いたプログラムが動く感動をぜひご体験下さい!!
体験授業を経て、2学期入会を決めて下さった方は夏期講習の
「Pythonではじめるプログラミング入門」
をご受講いただくと比較的スムースに2学期に合流することができます。体験授業と合わせてご検討下さい!
皆さんのご参加・ご受講をお待ちしております。
お申込・お問合せ
K会事務局 ☎03-3813-4581
受付時間 火~土曜日(13:00-19:00)
★夏期講習のお知らせ③★
2024年7月10日 更新
みなさんこんにちは。K会事務局です!
夏期講習の開始まで3週間を切りました!
近頃よく、「夏期講習の○○〇講座はまだ申し込めますか?」というお問合せをいただきます。
現時点での講座の申し込み状況は、下表のようになっております。
✕:締切 △:残り10名以下 〇:残り10名以上
※数学オリンピックに学ぶ証明問題の考え方の映像受講については定員は関係ございません
※講座の詳細はこちらから
初めてのご受講は不安かもしれませんが、講習初日に1階の受付カウンターで教室や施設のご案内をいたします。
また、忘れ物や先生への質問など、困ったことや自分一人では緊張することがあれば、
いつでもK会スタッフがサポートいたします!
「敷居が高い」「近寄りがたい」イメージがあるかもしれませんが、実はK会はとてもアットホームな場所です。
講師はもちろん、スタッフも優しく丁寧な方ばかりなので安心してくださいね。
夏期講習で皆さんとお会いできることを楽しみにしております♪
お申込・お問合せ
K会事務局 ☎03-3813-4581
受付時間 火~土曜日(13:00-19:00)
夏期講習の開始まで3週間を切りました!
近頃よく、「夏期講習の○○〇講座はまだ申し込めますか?」というお問合せをいただきます。
現時点での講座の申し込み状況は、下表のようになっております。
ターム | 時限 | 講座名 | 空き状況 |
---|---|---|---|
1 | 1 | 化学で世界を理解する | △ |
1 | 2 | 結び目理論 | △ |
1 | 2 | 数学オリンピックに学ぶ証明問題の考え方 | △ |
1 | 2 | 地理オリンピック国内予選問題研究会2024 | 〇 |
2 | 1 | 座標幾何 | 〇 |
2 | 1 | 情報オリンピック予選問題に挑戦! | △ |
2 | 1 | 言語学オリンピックで入門する音韻論 | △ |
2 | 2 | 極限 | 〇 |
2 | 2 | 形式言語理論と数理言語学 | 〇 |
3 | 1 | 数 | △ |
3 | 1 | 英語で読むNIPPON論 | 〇 |
3 | 2 | 整数論 | 〇 |
3 | 2 | 論理回路入門 | 〇 |
3 | 2 | 神経科学と精神医学 | 〇 |
4 | 1 | 初等幾何 | 〇 |
4 | 1 | 地質学 | 〇 |
4 | 1 | 古生物学 | 〇 |
4 | 2 | フィボナッチ数 | 〇 |
4 | 2 | Pythonではじめるプログラミング入門 | △ |
4 | 2 | 物理数学 | 〇 |
※数学オリンピックに学ぶ証明問題の考え方の映像受講については定員は関係ございません
※講座の詳細はこちらから
初めてのご受講は不安かもしれませんが、講習初日に1階の受付カウンターで教室や施設のご案内をいたします。
また、忘れ物や先生への質問など、困ったことや自分一人では緊張することがあれば、
いつでもK会スタッフがサポートいたします!
「敷居が高い」「近寄りがたい」イメージがあるかもしれませんが、実はK会はとてもアットホームな場所です。
講師はもちろん、スタッフも優しく丁寧な方ばかりなので安心してくださいね。
夏期講習で皆さんとお会いできることを楽しみにしております♪
お申込・お問合せ
K会事務局 ☎03-3813-4581
受付時間 火~土曜日(13:00-19:00)
━【「言語学をのぞいてみよう その37」(元K会英語科講師:野中大輔) 】━
2024年7月9日 更新
━【「言語学をのぞいてみよう その37」(元K会英語科講師:野中大輔) 】━
★このコラムでは、言語学を研究している筆者(元K会英語科講師)が、英語・言語学・外国語学習・比較文化などの話題をお伝えしていきます。★
身近なことばの観察と言語学
こんにちは、元K会英語科講師の野中大輔です。現在は大学で英語を教えながら、言語学の研究(英語・日本語の分析)を行っています。今回は私が最近見かけて興味を持った表現を取り上げて、それをもとに言語学について紹介できればと思います。
先日、とある老舗の喫茶店に入ったところ、アルバイト募集の張り紙が目に入りました。張り紙には「調理スタッフ募集 週2、3日以上勤務可能」と書いてありました。何の変哲もない、ごく普通の張り紙だと感じる方が多いでしょうが、私はこれを見て「おっ」と思いました。気になったのは「2、3日以上」の部分です。「2日以上」と書けば「3日」も含まれるはずなのに、ここでは「2、3日以上」と書かれているのがおもしろいと思いました。
このような表現は私自身使ってしまうことがありそうだと感じましたし、普通の会話の中で出てきたら、特に気にならないぐらい自然に聞こえたかもしれません。試しに「2、3日以上」や「2、3回以上」をX(旧Twitter)で検索してみたら、実際の用例がかなり見つかりましたので、問題なく受け入れている人が多い表現だと言えそうです(ついでに、「2~3日以上」のような表現も見つかりました)。
「2、3日以上」のような表現が使われるのはなぜでしょうか。今回の張り紙のケースでは、もしかしたら、喫茶店の店長に「週2日から勤務可能だけど、できれば3日以上勤務してほしい」という思いがあって、そのために「3日」まで書きたくなったのかもしれません。
「2、3日以上」が使われるもう1つの要因として、「2、3」という言い方が頻繁に使われるために、「2」と「3」を組み合わせたという意識が薄れ、「2、3」がひとかたまりの表現になっていることも考えられます。たとえば「2、3質問してもよいですか」のような言い方を考えてみましょう。このように言う場合は、質問の数そのものを伝えたいというよりは、数が「少ない」(1つではないが多くはない)ことを伝えたいのではないでしょうか。数の少なさを伝える「2、3」は、「2または3」では置き換えることができないような、ひとかたまりの表現になっています。「2、3」がひとかたまりとなっていれば、「x日以上」のxに「2、3」を入れて「2、3日以上」という表現が使われるようになっても不思議はありません。張り紙にあった「週2、3日以上勤務可能」では、「2、3」の数がちゃんと意識されるケースではありますが、「2、3」がひとかたまりの表現としてよく使われるというのは、今回の表現を受け入れやすくしている要因の1つだと言えるでしょう。
以上、「2、3日以上」のごく簡単なプチ分析でした。表現を観察して言語の実態を調査し、そうした実態が見られるのはなぜなのかを探る、というのを本格的にやると、言語学の研究になります。このコラムが、言語学のイメージをつかむのに役立っていたら幸いです。そして、「言語とのそういう付き合い方もありだな」と感じていただけたら、うれしく思います。
★このコラムでは、言語学を研究している筆者(元K会英語科講師)が、英語・言語学・外国語学習・比較文化などの話題をお伝えしていきます。★
身近なことばの観察と言語学
こんにちは、元K会英語科講師の野中大輔です。現在は大学で英語を教えながら、言語学の研究(英語・日本語の分析)を行っています。今回は私が最近見かけて興味を持った表現を取り上げて、それをもとに言語学について紹介できればと思います。
先日、とある老舗の喫茶店に入ったところ、アルバイト募集の張り紙が目に入りました。張り紙には「調理スタッフ募集 週2、3日以上勤務可能」と書いてありました。何の変哲もない、ごく普通の張り紙だと感じる方が多いでしょうが、私はこれを見て「おっ」と思いました。気になったのは「2、3日以上」の部分です。「2日以上」と書けば「3日」も含まれるはずなのに、ここでは「2、3日以上」と書かれているのがおもしろいと思いました。
このような表現は私自身使ってしまうことがありそうだと感じましたし、普通の会話の中で出てきたら、特に気にならないぐらい自然に聞こえたかもしれません。試しに「2、3日以上」や「2、3回以上」をX(旧Twitter)で検索してみたら、実際の用例がかなり見つかりましたので、問題なく受け入れている人が多い表現だと言えそうです(ついでに、「2~3日以上」のような表現も見つかりました)。
「2、3日以上」のような表現が使われるのはなぜでしょうか。今回の張り紙のケースでは、もしかしたら、喫茶店の店長に「週2日から勤務可能だけど、できれば3日以上勤務してほしい」という思いがあって、そのために「3日」まで書きたくなったのかもしれません。
「2、3日以上」が使われるもう1つの要因として、「2、3」という言い方が頻繁に使われるために、「2」と「3」を組み合わせたという意識が薄れ、「2、3」がひとかたまりの表現になっていることも考えられます。たとえば「2、3質問してもよいですか」のような言い方を考えてみましょう。このように言う場合は、質問の数そのものを伝えたいというよりは、数が「少ない」(1つではないが多くはない)ことを伝えたいのではないでしょうか。数の少なさを伝える「2、3」は、「2または3」では置き換えることができないような、ひとかたまりの表現になっています。「2、3」がひとかたまりとなっていれば、「x日以上」のxに「2、3」を入れて「2、3日以上」という表現が使われるようになっても不思議はありません。張り紙にあった「週2、3日以上勤務可能」では、「2、3」の数がちゃんと意識されるケースではありますが、「2、3」がひとかたまりの表現としてよく使われるというのは、今回の表現を受け入れやすくしている要因の1つだと言えるでしょう。
以上、「2、3日以上」のごく簡単なプチ分析でした。表現を観察して言語の実態を調査し、そうした実態が見られるのはなぜなのかを探る、というのを本格的にやると、言語学の研究になります。このコラムが、言語学のイメージをつかむのに役立っていたら幸いです。そして、「言語とのそういう付き合い方もありだな」と感じていただけたら、うれしく思います。
★夏期講習のお知らせ②★
2024年6月27日 更新
みなさんこんにちは。K会事務局です!
夏期講習の申し込みが始まり二週間が経ちました。
現時点で締切講座はございません。
定員に迫っている講座もございますので、検討中の方はお早めにお申込下さい。
講座案内はこちらから
Q.部活の予定がまだわかりません。いつまでにお申込すれば良いでしょうか。
この時期、上記のような質問をよくいただきます。興味のある講座があるのに、
『迷っているうちに締め切りになってしまう』なんてことがあると悲しいですよね。
K会の講座は、受講開始4日前までであればキャンセル・変更ができます!!
ご入金後も講座開始の4日前までにお申し出いただいた場合は、受講料は全額返金いたします。
お電話一本で、複雑な手続きもございません。ですので、もし興味を惹かれる講座があるのなら……
すぐに、お申込下さい!!
K会では少人数制を採用しているため、各講座の定員は最大でも20名としています。
情報科学など、PCをはじめとした道具を使う講座はさらに少ない10名前後の定員です。
少し焦らせるような話をしてしまいましたが、講座の受講にあたりご不安なことがある方は一度ご相談下さい。
受講相談を随時お受付しております!
内容によって、K会の事務局スタッフまたは講師が、夏期講習の受講をサポートいたします。
テキスト教材があるものは、校舎で閲覧も可能です。まずは気軽にお電話下さい♪
お申込・お問合せ
K会事務局 ☎03-3813-4581
受付時間 火~土曜日(13:00-19:00)
夏期講習の申し込みが始まり二週間が経ちました。
現時点で締切講座はございません。
定員に迫っている講座もございますので、検討中の方はお早めにお申込下さい。
講座案内はこちらから
Q.部活の予定がまだわかりません。いつまでにお申込すれば良いでしょうか。
この時期、上記のような質問をよくいただきます。興味のある講座があるのに、
『迷っているうちに締め切りになってしまう』なんてことがあると悲しいですよね。
K会の講座は、受講開始4日前までであればキャンセル・変更ができます!!
ご入金後も講座開始の4日前までにお申し出いただいた場合は、受講料は全額返金いたします。
お電話一本で、複雑な手続きもございません。ですので、もし興味を惹かれる講座があるのなら……
すぐに、お申込下さい!!
K会では少人数制を採用しているため、各講座の定員は最大でも20名としています。
情報科学など、PCをはじめとした道具を使う講座はさらに少ない10名前後の定員です。
少し焦らせるような話をしてしまいましたが、講座の受講にあたりご不安なことがある方は一度ご相談下さい。
受講相談を随時お受付しております!
内容によって、K会の事務局スタッフまたは講師が、夏期講習の受講をサポートいたします。
テキスト教材があるものは、校舎で閲覧も可能です。まずは気軽にお電話下さい♪
お申込・お問合せ
K会事務局 ☎03-3813-4581
受付時間 火~土曜日(13:00-19:00)
★夏期セミナーのご案内★
2024年6月26日 更新
本日は夏期セミナーのお知らせです!
『確率の魅力~日常の知恵から保険の仕組みまで~』
7月27日(土)13:00~15:00
講演者:近藤宏樹
講演案内はこちらから
近藤先生は元K会数学科講師であり、その昔は皆さんと同じようにK会の講習を受けていた生徒の一人でした。
学生時代には国際数学オリンピックに3度出場。第41回韓国大会・第42回アメリカ大会では銅メダル、第43回イギリス大会では銀メダルを獲得されています。
現在は下関市立大学データサイエンス学部准教授を務める傍ら、公益財団法人数学オリンピック財団理事やマンガ「数学ゴールデン」(白泉社)の監修など、数学に携わる様々な仕事に携わっていらっしゃいます。
そんな近藤先生に今回お話いただくテーマは……
「確率」です!!
「レアアイテムが出る確率は1%、100回ガチャをまわしたらゲットできるのか!?」
「日本で事故に遭う確率は1年間で0.2%。保険に入るべき?」
確率はゲームなどの娯楽から、命に関わる場面まで私たちの生活のいたるところに用いられています。
天気予報の「降水確率」を参考に、傘を持っていこうかな?と考えた経験が皆さんにもあるでしょう。
セミナーでは身近な確率の話題をたくさん紹介します。
また、複雑そうな確率の計算を「とある工夫で簡単に求める」というような、実際に手を動かしていただく時間も設けます。
基本から丁寧に解説するので、数学は苦手だというみなさんもご安心下さい!
親子、お友達同士でお誘いあわせのうえ、ぜひご参加下さい♪
お申込・お問合せ
K会事務局 ☎03-3813-4581
受付時間 火~土曜日(13:00-19:00)
『確率の魅力~日常の知恵から保険の仕組みまで~』
7月27日(土)13:00~15:00
講演者:近藤宏樹
講演案内はこちらから
近藤先生は元K会数学科講師であり、その昔は皆さんと同じようにK会の講習を受けていた生徒の一人でした。
学生時代には国際数学オリンピックに3度出場。第41回韓国大会・第42回アメリカ大会では銅メダル、第43回イギリス大会では銀メダルを獲得されています。
現在は下関市立大学データサイエンス学部准教授を務める傍ら、公益財団法人数学オリンピック財団理事やマンガ「数学ゴールデン」(白泉社)の監修など、数学に携わる様々な仕事に携わっていらっしゃいます。
そんな近藤先生に今回お話いただくテーマは……
「確率」です!!
「レアアイテムが出る確率は1%、100回ガチャをまわしたらゲットできるのか!?」
「日本で事故に遭う確率は1年間で0.2%。保険に入るべき?」
確率はゲームなどの娯楽から、命に関わる場面まで私たちの生活のいたるところに用いられています。
天気予報の「降水確率」を参考に、傘を持っていこうかな?と考えた経験が皆さんにもあるでしょう。
セミナーでは身近な確率の話題をたくさん紹介します。
また、複雑そうな確率の計算を「とある工夫で簡単に求める」というような、実際に手を動かしていただく時間も設けます。
基本から丁寧に解説するので、数学は苦手だというみなさんもご安心下さい!
親子、お友達同士でお誘いあわせのうえ、ぜひご参加下さい♪
お申込・お問合せ
K会事務局 ☎03-3813-4581
受付時間 火~土曜日(13:00-19:00)